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The problem of motion of a rigid body with a cavity filled with a viscous fluid
has been the subject of a number of papers (for example [1 to 53]). An analysis

of small oscillations of a viscous fluid at large Reynolds numbers, based on the idea of
the boundary value, is given in [3]. The same method is used in [4], where

small oscillations of a pendulum with an axially symmetrie cavity filled with a viscous
fluid at large Reynolds numbers were considered.

Tn this paper we consider the motion of a rigid body with a cavity of an arbitrary form
completely filled with a viscous fluid. Two assumptions are made: {1)-that the amplitude
of motion is small, so that the Navier-Stokes equations can be linearised, and (2)sthat the
Reynolds number is large. The linearised Navier-Stokes equations are solved here, similarly
to [3 and 4], by the method of the boundary value. The viscosity of the fluid in the cavity
introduces additional terms into the equations of motion of the rigid body. It is shown
that the dependence of these terms on the form of the cavity is expressed by a symmetric
tensor, similar to the mass tensor, and representing dissipated energy. Components of this
tensor are expressed by the Joukowski potentials only[ﬂ, i.e. by the solution of the
problem of motion of a perfect fluid in a cavity of a given form.

The computation of the motion of a rigid body with its cavity completely filled with
a viscous fluid, with the assumptions stated above, requires therefore: (1) the deter-
mination of the Joukowski potentials for a given cavity {these are already known for a
number of cavity forms) ; (2) the determination, by means of integration of the Joukowski
potentials, of the associated moments of inertia and of the components of the tensor re-
presenting dissipated energy; and (3) the solution of equations of motion of the rigid
body containing the additional terms. Problems (1) and (2) can be solved in advance for a
large class of cavity forms. The process of solving this problem is, therefore, only a
little more complicated than in the case of a cavity filled with a perfect fluid. [1]. we
should note that similar results were arrived at in [5] by an entirely different method.

General equations of motion of a fluid filled body are derived for stated assumptions.

568



Motion of a body with a fluid-filled cavity 569

Certain specific forms of cavity are analysed. The analysis relates to small oscillations
of a body having its cavity filled with a viscous fluid.

1. Analysis of the Navier-Stokes equations. The motion of a rigid body with a simply
connected cavity D, completely filled with a viscous incompressible fluid of density p,,
is considered (fig. 1).

The equations of motion of the fluid have the form

Wa 9P L oAug—VU,  divug=0 (.1
at Po

Here, ¢ denotes time, u_ is the absolute velocity of fluid particles, p is the pressure,
v is the kinematic viscosity, while U {r, ¢) is the assumed potential of mass forces. The
radius vector r shall always have itsoriginat point O, arbitrarily chosen, but rigidly con-
nected with the body. The absolute radius vector of the pole O is denoted by R,.

Let us iniroduce the velocity u = u, - dR, [ di relative to pole 0, and re-write
Equations (1.1} as follows

W+ (W)u=—Vg+vAu, diva=20, q=£+l’]+r-%—?—:‘#— (1.2)

Here index ¢ denotes a partial derivative with respect to time,

and ¢ is a new function which is to be determined. The boundary and
initial conditions for the system of equations (1.2) are given by

u s m x r on S (103)
uzuo(r) when t=1{p (1.4)

Here, @ (#) is the angular velocity of the rigid body, and § is
the boundary of cavity D. The initial velocity u,s(r) is subject to
conditions

diV uo = O in ’D, uo = o (to)x Y on S (1,5)

Let L be a characteristic dimension of the cavity, and T a characteristic unit of time,
for example, the oscillation period of the body. The Reynolds number is assumed to he
large

— T 21—l
R=INT">1 (1.6)

We further assume that | wy| ~ @L. For the purpose of linearising equations (1.2),
we shall assume that everywhere |(uV) u|<£| /.

As outside the boundary layer the order of magnitude is lu | ~wL, and V ~L™,
it follows that |u </ | ~ . Within the boundary layer various components of vectors u
and \/ are of different orders of magnitude {see below), but here also l uy/ f ~ .

Therefore, the condition of linearisation has the form

ol (1.7
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The dimensionless parameter T is of the order of the angular amplitude of oscilla-
tion of the body. We assume in the following that conditions of (1.6} and (1.7) are fulfilled.

Condition (1.7) permits the linearisation of Equations (1.2)
= —Vq+vAuy, diva=20 (1.8)

For convenience of notation we shall select units of length and time, such that L, ~ 1
and T ~ 1. Then the condition (1.6) meatts that < 1. We shall use the boundary value
method [6] for solving the boundary problem (1.8), (1.3) and (1.4) for small values of
parameter v in higher derivatives. We assume

u=v+w, v=v"fvhvl vy .
g=g+5h g=g +virg4vgt4... (1.9)

Upper indices denote the order of approximation. Here w and % are functions typical
of boundary value problems [6], which rapidly tend to zero with the increasing distance
from the cavity walls.

We select functions v® and g° so, as to satisfy the equations of motion of a perfect
fluid, the condition of absence of flow through the wall, and the initial conditions (1.4).
The boundary problem for v® and g° is expressed by

v = — g°, divve=0mD
» o (1.10)
Vn::(mx;-).n on §, vi=1u; whent=%

Here n is the unit vector of the inward normal to S. In order to solve problem (1.10)

we shall, first of all, determine vector a () in D from

curl @ = curl u,, diva=0 inD an=0on § (1.11)

It is known [7], that the conditions (1.11) uniquely determine vector a. It follows from
(1.10) and (1.11) that

[curl(v® — a)}; = O, curl (v® — a) = Qwhen =1,
Consequently, within the space D and for ¢ 3. 1,, the vector v° — a is a potential one.
We can therefore write v° = a -+ 3/ @°, and amrive, through (1.10) and (1.11), at the
Neumann®s problem for the function {p° {r, t)

Ag° =0 in D, 89° [ On = (@ Xr)-mon S (1.12)

Conditions (1.12) determine the harmonic function ° with an approximation to an
arbitrary function of time. From the first equation of (1.10) we have g° = — @,° -+ C° (¢)
where C°(¢) is an arbitrary function. It is clear that, with account being taken of (1.11) and
(1.12), functions v° = & + \/@° and g° satisfy the equations and boundary conditions
(1.10). In order to check the initial condition of (1.10), it will be necessary to prove that

i

vector
ay (r) = V°(r, to) — Bo (r) = a(r) + V° (r, £p) — Uy ()
equals zero within space D. By virtue of (1.11), {1.12) and {1.5) we have
curl 8y =0, diva,=0 1in D, aam=0 on$
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Hence, a, =0 in D.

Thus, the determination of v° requires the solution of the problems (1.11) and {1.12).
We note that for the most important case of motion starting from rest, we have ug =0 and
a = 0. The solution of problem {1.12) can be expressed by the Joukowski potentials [1 and

2}
q>° =(01(D1 + 0D, +®3®3 {1.13)

Here, w; {i=1, 2, 3) are the projections of the vector @ on the axes of an arbitrary
system of coordinates (Jxy%,T3, rigidly attached to the body. Functions (I)i satisfy
boundary conditions

A®; =0in D, 0@;/dn=(r X n)-¢; on §(i=123) (L14

where e, is the unit vector on the axis Oxi.

Functions v* and g* will be made to conform to the equations and to satisfy the

following initial conditions.
Vit =—Vghdivy' =0 in D, v!=(whent=t,

It follows from this that curl v* =0, in D, for ¢ > ¢, and we can, therefore, assume
that v} = S/@'. We then have for the functions ¢!, and g*
AY*=0, g=—-¢'+C@inD
Here, C'{?) is an arbitrary function. We note that functions
v = v° 4 vl g = g° + vihg!
satisfy the equation of motion (1.8) in D, with an error of the order of y, and satisfy the

equation of continuity and the initial condition (1.4), exactly.

To satisfy the boundary adhesion condition (1.3) we assume, in conformity with (1.9},

that
R . o . 5 , (1.15)

u= vt Vvt w=a+ Vo° + viUQ + w, g = g% + Vgl + b

Terms of the order of v and higher appearing in the expansion (1.9), were neglected.
Taking into account the equations and initial conditions which functions v°, w1, g°, g,
and g* fulfill, and substituting(1.15) into (1.8) and (1.4), we derive the equations and the
initial condition for functions w, &.

wi = — JhtvAWwW, divw=0 BD, w=0 when t=1 (1.16)

We see from (1.3) and (1.15), that the following boundary condition must also be
fulfilled

wH+ vVl =@ Xr—v® on S (117

We introduce a system of curvilinear orthogonal coordinates &, 7 and { such that the
boundary surface S coincides with the surface { =0, and that any point within $ has the
value {> 0. We denote in this system the corresponding Lamé coefficients by Hg, H,, H&
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{without affecting the generality, we assume that H§= 1 for { =0}, and by Wi, Wy, W
the components of the vector w in the above system.

We write down the equations of motion and of continuity (1.16) in the system of co-
ordinates §, 1, . We then substitute

I = av's, wy = viw,

and seek expressions for Wz, Wy, and w, in terms of f, 7, o and ¢ in the region D, of the
boundary layer, adjacent to surface 5. In the region D, we have § ~ v':, and @ ~ 1,

and hence
He=H°+00%), H,=HFS+0w, H =10

where Hgo, and H,° are the values of Lamé coefficients on the surface S, i.e. where
{=a =0, We shall simplify the equations of motion and continuity in the region D, by
taking into account these assumptions, and omitting in these equations terms of the
order of p ¥

ok _ G oh | Pwy dw, oh , Pu,
oa = 5= T T e s = T T am
a (anwg) a (HEowﬂ ) o o awa (1-18)
g T e T HEHS 5 =0

It will be seen from equations (1.18) that % is independent of &. But 4 is a function
typical of the boundary value problem, and 4 »0 when @ » . Hence 2 = 0, and we can

rewrite the last three equations of (1.18) as follows

dw* Arw* . " dw,
= e — .19
ot proal Div w*+ 7 =0 (1.19)

Here, w* is a two-dimensional vector with components Wz and w,, and Div denotes
a two~dimensional divergence operation, computed from the values of the two-dimensional
vectors on surface S (in this computation @ is considered to be a parameter), The bound-
ary conditions for w* is found from (1.17) and w = w* | O (v'), with the accuracy of
the order of " and is

wW¥ =@ X 1 —v° for a =20

It follows from the boundary condition (1.10) that the right-hand side of this equation
represent a vector, tangent to the surface §. Yector w* must also satisfy the initial zero
condition (see (1.16)) and the condition at infinity

w¥* = 0 when =1, w¥ 50 when 0 — o

The solution of the thermal conductivity equation (1.19), with the stated boundary
and initial conditions, has the form [8]
t

a S ®(T) X r—v°{(r, 1) —q? (1.20)

* __
w _ T)*/z exp m dt

C2Vm
1y

Substituting {1.20) into the second equation of (1.19) and integrating with respect to

a with w, — 0 when ©-> 20, we obtain
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= vE (— EIEE)

Reverting to the variables { = qv':, and wy = v'/upy, we rewrite the equations (1.20)
and (1.21) as follows

1 g Divie(t) X r— Vv (r, 7} —al e (1.21)

t
T ( [em)xr—vir )] —
wEnLh = VFS t—u7" P E—m

o

dv

V7 { Divie(e) X 1 —v°(r, 7)] -2
v 1v [ r—v .
wt(§1 n? Ci t)"" Vﬂ—; (t——'],’)l/’

_— C‘!
OXP Lt — ) dv

Here the position vector r and the inward normal n originate at the point £, non the
surface s i.e. at {=0.

By virtue of (1.22), the projection of (1.17) on the normal n to the surface S is

apt - wt(&? ‘l'I.O, t) — 1 tS Div[v"(l', 1)—--n)(r)><r] de on &

“on Vv Va t—)h (1.23)

In this way we have obtained for the function @! harmonic in D, Neuman’s problem
with the condition (1.23). The solution of this problem can be expressed in a manner
similar to that of problem (1.12) by a harmonic function independent of time.

ts

Let functions ¥, and lFi be the solutions of the following boundary problems

A¥,=0 inD, g¥,/dn=Divaons (1.24)

A¥; =0 8D, 9¥;/0n=Div(VD;—e; Xrjon S  (i=123)

Then it can be written
t

1 1 ¥, 1)
@' (r, ) = 7;5 V=t Y=Yt 0¥+ o¥yto¥y 1.2

8

Taking into account Equations v°= a - V @° and (1.13), we see that function !
satisfies the Laplace equation and the boundary condition (1.23), and that the initial
condition v = V¢! = for t = 15 is also satisfied.

Thus, the determination of an asymptotic solution for the boundary problem (1.8), {1.3)
and (1.4) is reduced to the following. First, for a given cavity D we have to determine the
Joukowski potentials fbi which must satisfy the boundary problems (1.14) and the functions
W (i = 1, 2, 3), which, in turn must satisfy the problems (1.24). We note that for any
vector field p (r), defined on a closed surface S, the following equation is valid

@ Div pdS = 0 (1.26)
S

and is easily proved by means of the Gauss — Ostrogradskii theorem for surface vector

fields [9]. Therefore Neumann's problems (1.24), as well as those of (1.14) have unique
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solutions with the accuracy up to the constant term.

If at the moment of time ¢ = ¢, we have a flow with vorticity it will be necessary to
determine, in addition to @i and ‘P‘-, the vector function a in accordance with conditions
(1.11), and the function ¥, in accordance with (1.24). Functions (Di and ‘I’i depend on the
form of cavity D only, while functions a and ¥y, also on the initial distribution of veloci-

ties ug. We note that all these functions are independent of time.

The asymptotic solation of the problem (1.8), (1.3) and (1.4) is expressed, in accord-
ance with above formulas, by

u=a-+ Ve + viVe +w, g=—¢° —vhet+C() .2

where C (1) is an arbitrary function. Functions @°, @', and w are defined here by formulas
{1.13), {1.25) and (1.22) in which v°* = a tha_ Outside the boundary layer, formula
{1.27) approximates the exact solution of problem (1.8), (1.3) and (1.4) with an error of

the order of v. Within the boundary layer itmelf the functions (1.27) define the component
of the vector u normal to § with the error of the order of ¥, while for the function g and

the component of vector u, tangent to S, this error is of the order of »%5.

We shall now indicate the time interval in which the solution arrived at is valid. It
wae assumed that in expansion (1.9) coefficients v°, v!, etc. were of the same order of
magnitude. Since |Wy] ~@l. L ~ 1, and T ~ 1, it follows from (1.10), (1.11) and
(1.13) that | v° |, | @ |, and @° are of the order of magnitude of . We therefore conclude
that, by virtue of (1.24) and (1.25), ¥ ~ @, and consequently P ~o Vm In
order to have either v° and v, or ¢° and ¢, of the same order of magnitude, we must have
£ — ty ~ 1. Thaus, the obtained solution is generally valid in the interval of time of

the order of the period T of oscillation of the body.

Let us assume that two following conditions are fulfilled: (1) at the initial moment
the flow is potential, i.e. curl upo =0 and consequently @ =0 and ¥, =0; (2) functions

(i=1,23)

for all values of ¢ (£, < t < o0) are of the order of magnitude of w. In this case the
motion of the body consists of oscillations about a certain central position, and function
(Pl of {1.25) will be of the order of @ even when t - oo, In this important case the solation
arrived at is valid, with the accuracy given above for all { > {,. If, however, these
conditions are not fulfilled, the motion will be essentially vertical. Such motions in

absence of viscosity were considered in [10].

2. Equations of motion of a body with (luid. The equations of motion of a rigid body

with a cavity completely filled with fluid can be written as follows
mR”=F, K+mRBR—Ry) xR~ my 2.1

Here, m is the mass of the body with fluid, R, and R, are the absolute position
vectors of the center of inertia C of the system and of the pole O, rigidly connected to the
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body, F is the principal vector of all external forces acting on the body, m, is the prin-
cipal moment of these forces about the pole O, and the dot above a symbol indicates a
derivative with respect to time. We denote by K the kinetic moment of the whole system

in its motion relative to the pole O

K:erudmr~JO-m+pOerudV (2.9
n
Here the first term represents the kinetic moment of the rigid body (3, is its tensor of
inertia relative to the pole 0), and the second is the kinetic moment of the fluid in the
cavity.

Equations (2.1) must be supplemented by kinematic relationships (for the direction
cosines, or Euler’s angles), which in this case are the same as for a rigid body without
any fluid. The derivation of equations of motion is reduced, in this manner, to the deter-
mination of the kinetic moment of the relative motion of the fluid (second term of (2.2)).

We shall compute this kinetic moment with an error of the order of o, v. For this
purpose we shall use u as given in (1.27). In addition to that we have in the region of the
boundary layer D, w = w* -+ O (v"?). As the volume of D, is O (v's}, we can
assume that in this region w — w¥*. This will give an error of the order of v when
computing K from (2.2). We assume that outside D, w = 0. We then have

K=Jy0+K°+p, Sr x7@°dV -+ po Vv &rchp‘dV +
D D
+ * o (2.3)
P S rxwrdV +0(), K°=p, eradV
b, b
It is evident that K° is a constant vector. The third term of {2.3) represents the

kinetic moment of potential motion of the perfect flnid about the point 0. By virtue of
(1.13) and (1.14), this term can be expressed by J-@®, where J is the tensor of associated
masses [1 and 2]. Components of the symmetric tensor J (associated moments of inertia)

are

(2.4)

§> (r xn)-;D;dS = —p, @mia‘”:‘ s
$ 3 on
Goi=1,2,3)

Jyy=J5= po[S(rXV@;)-ejdV = —Po

We reduce the fourth term of {2.3) to a surface integral with the aid of equation
rX /@' = — curl (rg'), and then substitute into it the expression for ¢! from (1.25)

S [famnvas) i
S

4
t
We substitute the expression for w* from (1.22) into the fifth term of formula (2.3),
and replace the volume integral over D, with the surface integral over S and the integral
with respect to { from 0 to co. This is permissible because w* rapidly tends to 0 when
£ >> v":. After the integration with respect to {, this term becomes
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t

%lfggﬁrx(wxr-vﬂdsjvf; (v =a V)

D

The kinetic moment (2.3) can now be written in the form

K=1I0+K +K* A=1J,+3) (2.5)

Here K* is the sum of the last two terms of Formula (2.3} which by virtue of the above
relationships and of Formulas (1.13) and (1.25), equals

K*:E%/Lj‘:‘zg{é‘)[—rxaw(rxn)‘Fo]dS—}-

[

(2.6)
+ © rx{e;xr—VO) —(rxn ¥, dS
ge&[ (e ) = (rxm) ¥, ] ds| e
Let us now introduce new notations
b= ng (?[—rxa—-—(rxn)‘l’(,]dS
Va s 2.7
vy .
B,,wpov @[rx(e,xr*vm)m(rxn)w ]-e;dS (ii=1,23)
S
and rewrite the formula (2.6) as follows
¢ t
— dv. PN o (1) dy (2.8)
= b B" —21) t‘—'t L ———t s
zoS( + m)]/t—r 4 o+ B S]/a—-t

Here b is a constant vector, and B is a constant affine tensor with components Bij‘
In accordance with the boundary conditions (1.14) we have

i a0,

rxn=— Bei—af
fml

Substituting this expression into Equations (2.7), applying Green's theorem, and using
the boundary conditions {1.24), we obtain

b= "°V"<§(.—rxa-§ei%—?%)ds.:

Va i=1
3
_ Pové" g’;(__, . E e.; Div a) dS

(2.9}

V
V’n

e;-e5rt — (e;.r) (e;-r) + (r <e;) - VD, — D Div (7, —e; . r)] Ay

o,
[es-eir® — (ei-1) (e5o1) —es- (r x VD) — T W, ]as —

m»e—:

Bij =
po V'V
!

Va

=
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For any given vector field q (r) and scalar function f(r) on the surface S the following
formula is valid [9]

Div fq = f Divg 4+ q-Grad f

Here Grad denotes the operation of taking the gradient along the sarface S. If the
function f is also defined outside S, then the Grad operation is related to the gradient in
a three-dimensional space by the expression Grad f = Vf — n (3f / n). With these
equations and formula {1.26} we find, that for any closed surface §

$1Divqds = §(n gl —vy)qds 2.10)
s s

We shall use this identity (2.10) for the transformation of integrals (2.9). Taking into
account the fact that on surface § an = 0, we obtain for vector b

—_ 3
b=9°1};,v éj}[—r x as e;(V(Df«a)]dS =
s = 2.11)

V= 5

A gimilar transformation of the second integral of (2.9) yields

—_ 3
YT S et v O)-as
8

By =L §rever—(e-e0 o) +(rxe): 0 —

o0
— (0% — VO (7 Oy —eyxr)]aS = 212§ [[rer-e;— (r-e) r-e)] +
8
0,
+ (l' X 01)' v (D’ + (rxe,)-V 0; + A\ ®¢-V 0, —-—a—;[ll'v 0,-—11-((;; X l‘)]} as
The expression in the second square brackets of the last integral is zero by virtue

of {(1.14), and the expression in the first bracket can be tranaformed by using the following
known identity from vector algebra [7]

rt(ei-e) —(r-e) (r-e;) = (¢ x )-(r xey)
Finally we obtain

By = P°V‘§’ (S) (rxei+ VD). (rx e;4 V D;)dS (2.12)
8

It follows from this that B is a symmetric tensor (B ii=B; ). It can be brought into a
diagonal form, i.e. we can obtain Bij =0 for i # j, by a suitable selection of the coordinate
system 0%, %,%, . Since in any system of coordinates B ;i > 0, it follows that the eigenvalues
of the tensor B are real and positive. Dependence of the components B i+ 88 well as of
7 ij of the tensor (2.4) on the cavity form is expressed by the Joukowski potentials Q‘-.

For the computation of tensor B it is sufficient to determine the functions Qi and calculate
the integrals (2.12). Vector b is further deptendent on the vector function a. We note
that the computation of b and B does not require the solation of the boundary problems (1.24).



578 F.L. Chernous’ko

Let us now consider the effect of altering the pole 0, on the vector b and tensor B.
Let points 0 “and O be stationary with respect to the rigid body. We denote the vector
connecting these two point by d (¢) = 00", We then have, for the relative velocities and
position vectors of points of the fluid, the following expressions

r'=r—d(), w=u-—d(), uy == ug — d’ (t)

Here up is the initial velocity, and the primes indicate values relative to the pole 0",
It follows from {1.11) thatin this case a "= a. The boundary conditions (1.14} for the func-
tions q)i’ and (Di with respect to the poles O “and O are related to each other by

G0/ gn = 8@, ; dn — (e; X d)-mon S (i = 1, 2, 3)
Consequently, we have for @7 and @, everywhere in D
O, =0, —(e,;xd)r, rXe+UD =r1Xe +TOD

It follows immediately from these equations and from Formulas(2.11) and (2.12) that
b’=b and B =B, i.e. that vector b and tensor B are invariant under the change of the
pole O. Consequently vector K* is also independent of the pole, which can therefore be
arbitrarily selected.

We note that this approach is applicable without basic difficulties to multiply-
connected cavities. If at t = #5 the flow is potential, as is assumed below, then the analysis
of the multiply connected cavities does not differ at all from that of a simply connected
cavity.

Thus, the kinetic moment K is expressed by the formula (2.5) where K* is defined
by the formula (2.8}, and b and B by formulas (2.11) and {2.12). The substitution of K into
Equations {2.1) yields a system of integro-differential equations of motion of a body
filled with a fluid at large Reynolds numbers. These equations are generally valid in the
interval of time ¢ — t35 ~, 1 with an error of the order of vv. If however, two conditions
formulated at the end of Chapter 1 are fulfilled the validity of these equations is extended
to t — to>> 1. In this most important case, considered in the following, we have K° =0
and b = 0, while the magnitude of K* is, for all ¢ > tq of the order of v, as compared to
1-@ given by (2.5). This aspect makes it possible to solve the system of equations (2.1)
by the method of small parameter.

We note that formulas {2.5) and (2.8) make it possible to derive equations of motion
for more complicated systems than a rigid body with a cavity filled with a fluid (for
example, a system of bodies with fluid filled cavities).

3. Certain specific cavity forms. We shall now determine tensor B for certain specific
forms of cavity, and at the same time establish expressions for tensor J.

1. Let O, be the axis of symmetry of the cavity. Then the Joukowski potentials by
virtue of (1. 14) have the following properties.
(Di (21, 29, 25) = — ‘I’i (—xp, —2a, 73) (I = 1, 2), Dy (24, Z, Z3) = Oy (—zy, —y, Ty)
In this case we obtain from (2.4) and (2.12) ]ia =0 and Bis =0fori=1, 2, i.e. the
axis of symmetry of the cavity is the principal axis of the tensors J and B. If all the three

axes Oz, Oz, and Ox, are the axes of symmetry of the cavity, then the tensors J and

B will have a diagonal form on these axes.

2. We shall consider a cavity enclosed by an ellipsoid
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z,2a,72 + %4t + zfayt =1
In this case the Joukowski potential ®, is[1]
@3 = [(a® — a?) [ (a® + a¥)]zizy 3.1)
while @, and @, are obtained by cyclic transposition of all indices.
The associated moments of inertia (2.4) are expressed by the known formula[1]
Tss = 15mpoaraaag (3 — a?)? (a® + ag!)?, Jy; = 0 when i

where [y, and J,, are obtained by cyclic transposition of indices. Substituting (3.1} into
{2.12) and introducing into the latter new variables

Zy = @, sin u ¢os v, zg = a, sin u sin », Zg = ;€08 u

we shall reduce the integral {2.12) to a double integral

B — 16p, ’Vr:walﬁaa P ay as
W= gt (e ey | Gn ) m=on, a’m_‘; (3.2)
e 2—'-—ﬂ~§ o ln“( ap? + ag? )}.COS&—}—S),Q uk o ® + ogd g

We note that B =0 for i # j, and B,; and B,, are obtained by cyclic transposition
of indices.

Function F (y, @) is dependent on two parameters @, and @,, and decreases
monotonely with the increase of either of them. Since F (a,, a,) = F (a,, &), it can be
assumed that a; > .

The integration of (3.2) with respect to u can be carried out in terms of elementary
functions with the result

3/,71

2 __costy , sinty
F o, ap) =2 S G () dv, = ST 4 S
2(3z —4) 4 f p—
G(z)—s( )!’3z—~2+ Vioz o +_://; z] when z 1 (3.3)

—4
G(z)—g(z 1)[3z—2+z$z )

/Z—-i Y
sin™?! e ) ]whenz>1

When z >0 the function G (z) is continuous; when z » 0 we have G (z) ~ ¥ 1,
G(1)=2/3, and when z»sowehave G (z) - 3/,enz’s « These formulas make it possible
to determine function F (a;, @,) when certain relationships between the parameters @, and
a, exist

F(a,a) = G@?), Fa,H=1%
F (ay, ap) = Y0573 for a; > const > 0,049 — 0
F (@y, ag) = Yy (@72 + 07%) for ay, @y — 00

We shall analyse with the aid of these formulas certain particular forms of ellipsoids.
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For the ellipsoid of revolution we have

B33 == 4p0 V;{;; 3603_26 ((lgza_ i} (CI = @y == [I_.‘)

where the function G (z) is defined by (3.3),
Using the assymptotics of function G (z)
we find, for a strongly elongated ellipsoid
of revolution

Bys =3/ 4npy ¥V nuv aday

For a strongly flattened ellipsoid
(ag <€ a3, a3 <K 85) we have

- ==
o

\
e
..

a6 By =By =4p, Vv ajazag?
\ = 47- By = 2po V’W as%as® [ (a2 + a,)
A %
e ! These formulas are easily derived by
7 / 7 a, cyclic transposition of indices in Formulas
(3.2), and the use of the asymptotic proper-
ties of the function F. In particular, for a
FIG. 2 strongly flattened ellipsoid of revolution

(@, = a3 = 8, 43 q) we have

Byy = By = 4py ¥V 7v a%ag?
Bu=po Vavat
Finally, in the case of a spherical cavity of radius a we find directly from (3.2)
By =%/ Yvat (i=1,2,3)
In the general case (a, == a,) , function # {ay, ay) was determined by calculating the
quadratures of(3.3) on an electronic computer. Values of the function F, calculated for
several values of @, and a, are given in Table 1. Function F (&, &;) is represented dia-

grammatically on Fig. 2 for fixed values of a, with my>>dy , with the values of a, given
at each line, and the broken line representing Pfa,, ;).

TABLE 1
ay .
as 0.4 0.2 0.5 i 2 5 10

0.4 590.0 | 311.8 258.7 252.5 251.1 250.7 250.6

0.2 — 74.11 36.16 32.57 31.79 31.59 31.56
0.5 _ — 4.891 2.621 2.218 2.124 2,141

1 — — — 0.6667| 0.3665 | 0.3047 0.2970
2 —_ —_ —_ e 0.1036 | 0.05499 | 0.04944
5 — —_— - s — 0.01168 | 0.007088
10 — — —_ — — — 0.002638

3. Let the cavity D have the shape of a solid revolution. Let the axis Ox, be the axis
of rotation, and let us introduce cylindrical coordinates p, ¢, and z

zZy =@ co8.¢,

zy = p Sin g,

In this system of coordinates the boundary conditions {1.14} will have the form

3=z
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(3.4

oD, / On = — s8in@ (zn, — pn,), D,/ dn = cosg (zn, — pn,), 8®3/dn = 0

where n_ and n, arethe projections of the unit vector non the p and z axesrespectively. We
note that in this case the normal n lies in the meridian plane ¢ = const. It will be seen
from Equations (3.4) that the Joukowski potentials can be sought in the form of

@, = — sing f (p, 2), D, = cos¢ f (p, 2), D=0 (3.5)

The boundary problem for the function f (p, z) is obtained from (1.14) by taking into
account (3.4) as follows

(3.6)
%%(p%{;‘)%'g%—%:O in A, np(-g-g——-z)-i-nz (-z—ﬁ—i-p)——*() on T

Here the two~dimensional region A is the intersection of the cavity with the half-
plane ¢ = const, and I" is the boundary of this region. If the axis of rotation intersects
the cavity D, then the boundary of region A contains segments of the axis p = 0. In this
case these segments are not included in the countour I, and the condition of boundedness
of function f is substituted on them for the boundary condition (3.6). It is not difficult to
compute the expressions of integrals (2.12) using the formulas (3.5)

rX e+ VO; = e sing cosp (—f, + p7f) + e, (z — sintpf, —
— cos* @ p7lf) — ey 8in@ (p + f2)
rxes 4+ Y@y = p (e, sing — e, cos Q)

3.7

A similar formula is obtained for r X e, + Y@, . We substitute (3.7) into (2.12) and
replace the integration over the surface of revolution 5 with the integration with respect
to angle @ (from 0 to 277) and along the curve I'. After elementary integration with respect
to @ and some simple transformations we obtain

Bu=Bu=ps Vv 5 1+ e 2s = fy—p )+ 0+ AL

- (3.8)
Biss=2p, Vﬂvip’di, By =0  (is=])

where the indices p and z denote partial derivatives.

We note that the component By, is independent of f, It differs from the moment of
inertia of the surface S with respect to the axis of rotation Ox, by a constant factor only,
and can be easily calculated for various cavities of the form of solids of revolution. It is
possible, in particular, to compute from (3.8) the component B,, for an ellipsoid of revolu-
tion and for a sphere.

Computation of B,, and B,, requires the prior solution of the houndary problem (3.6).
We note that, if we assume
fe.=rpz+ fi(p, 2) (3.9

then the first of the integrals {3.8) can be simplified and reduced to
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Biy =By =py Vv S 12+ e+ (2p -1y, )2 p (3.10)

It follows from (3.6) and (3.9) that the unknown function f; satisfies the boundary
condition

1 o ofr a%f b
Tﬁg(p _0?)_*"'52_}__‘3}20 in A’ ngjlp‘+nz(29+j1z)m0 on T (3-11)

Let us assume that the rigid body, with its cavity of the form of a solid of revolution,
is moving in a plane, and that the axis of the cavity executes a translatory motion (this
particular case was considered in [4}). In this case only one component of the tensor B,
namely By, will enter the equations of motion of a body with flaid.

It is also possible to change the integrals (2.4) to cylindrical coordinates and sub-
stitute into these the expressions for (I)i from (3.5). A simple transformation yields integrals
similar to those of (3.8)

anjz,mupoi(pn,——znp)jpdl, Jog == J;5=0 (i1 i f=1,2,3) (3.12)

It is not difficult to verify that Expression (3.12) is equivalent to the formula arrived

at in a different manner on page 86 of [1].

4, We shall consider a cylindrical cavity of radius @ and height i. We select the
origin of the system of coordinates at the center of symmetry of the cylinder, and make
Oz, the axis of rotation, The shape of the region A of the plane pz is, in this case, a
rectangle the 0 < p < a, and |z| <k, while the curve I" consists of segments
p=ga,|z|<hand z= +h, 0<xp<a. Inaccordance with (3.8) we have

Bgg == py V 1tv a® (4h + a) (3.13)

Function f, (p, 2) satisfies Equation (3.11) within the rectangle A, On its periphery,
the boundary conditions cf (3.11) apply together with those of boundedness of function f;
on the axis, which are

%m—zp when |z{ =&, %_—;0 when p = a, |hl<oowhen p=0 (3.14)

We shall seek the solution of Equation (3.11) with houndary conditions (3.14) in the
form given in[1 and 11]

hilp, 3= ) epsioh(Gnz/a)Jy(Lnp/ a) (3.15)
=)

Here /, is the Bessel function, and ¢, and {, are constants. It is not difficult to
prove that for any values of ¢, and Cn. function f; of (3.15) satisfies Equation (3.11) and
the condition of boundedness for p =0,

The boundary conditions (3.14) will be satisfied by a solution of (3.15) for p = g, if

the consecutive positive roots of Bessel’s function are taken for { n

Jl'(gn)::()’ ("’milzi"‘;0<§1<§f<"‘) (3.16}
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In order to satisfy the boundary condition (3.14) for |z| = & the coefficients <,
are defined as follows [1 and ll] 4at

A T LG — Db (5 a) T (T

In the case of a circular cylinder the integral (3.12) becomes

(3.17)

h a
Jiy = Ty = 25tpoa S 2f (a, 2) dz — 2%pe S % (o, h) dp
¢ 0
We substitute into this formula f {' , ) from (3.9) and £; from (3.15), and calculate the
integrals, taking into account th fo rmulas {3.16) and (1.17), and the properties of Bessel's

function. After the transformations utilising the identities [11]

o0

1 1 1
3 il 2‘, £ (Cn TS § (3.18)

n=1

we obtain the known result given in [1]

tanh (;nH)
A (e

We shall now write down the expression for the integral (3.10) for the case of the
circalar cylinder, taking into account the boundary conditions (3.14)

[e o]
Ju=Tu=np'e (H), H="1, om=2m— 3 o115 2 y (3:19)
a 3 2 foosas

a

h
Bu=Bn=2p Vav {S (' + 97 hppdp + a S (a7 + Qe+ 1,01, a’z}
0 0

After integration by parts of the first term of the first integral, and transformations
utilising equation (3.11), this expression becomes

a h
B = By = 2p ¥V v [S (ff 122 )i=n P o -+ 4adh + 4a%f1 (a, ) - a S (@f2 + 1M pma dz}
H H

We now substitute into the above f; from the formula (3.15), and integrate each term
of the obtained series. After the transformations which take into account Formulas(3.17)
and (3.18) we finally arrive at

Byu=Byp=16g Vrva'B(H), H=h/a

5 ant? (C, 1 ot 3t 2 {)tann (L, H
B(H)= 2 H+(1— H)Z" 0 (Sat) _ 3 (2,4 — 3C,2 — 1) tann (, H)

§z €, —1) = LI — 1)
o ot tann(t, H) € H) (3.20)
tanh tgnh
44 n m
722 mZI (En Z_ Em’) \‘cn (Em? 1) Em (G2 — 1)]

Series (3.19) and (3.20) are convergent for any H > 0. Numerical values of function
B (H) were obtained by summation of series (3.20) on a computer. The roots ;n of
Equation (3.16) were obtained from the tables given in [12] for n £ 40, while for n > 40
they were computed by means of the known asymptotic formula [13]. Function & (H) was
concurrently calculated from {3.19). Some results are given in Table 2, and presented
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diagrammatically on Fig. 3

TABLE 2
H } 0.1 ‘ 0.2 ‘ 0.5 ‘ 1 2 l 5 10
o (H) 0.04817 | 0.08685 | 0.1465 | 0.1909 3.409 76.91 652.7
B(H) 0.004886 | 0.01889 | 0.1011 | 0.3049 0.7892 | 2.288 4.788
PRy ;L The assymptotic values of the functions
yl7 / a (H) and B (H) are found without difficulties
1o A by using identities (3.18)
a~1Y.H, B~1, H* when H 0
2)as / o~ oH? = S H g
V/ B~1YH — B, when H — oo
/ \azs y o a, = 1.077, B, = 0.2415
/ / Constants 0 and B, were determined by
- 4| comparing them with the numerical solution.
h 5 r 15 7 75 These formulas make it possible to write down

approximate expressions for the components of
tensors J and B for a cylinder, when # < a and
FIG. 3 h>»a

In = Jga = Yyn poath

By =By =8p, Vva®h® (h<Lo)
I = Jag = qpea® (33 — 3/ga%h + opa?)
By, = By = 8p, Vv 6® (h—2Bpa) (h>>a)

The latter formulas yield a high degree of accuracy already for 4 > 2a. Component
B,, is, in all cases, determined from the formula (3.13), while /53 =0.

The Joukowski potentials are known for a number of cavity forms [1 and 11]. The
computation of tensor B for such forms is reduced to the computation of integrals (2,12).
Generally, a prior solution of the boundary problems (3.14) is required.

4. Forced oscillations of fluid in the cavity. In par. 1 the motion of fluid in a cavity
with the initial condition stipulated by {1.4) was considered. We shall now analyse forced
oscillations, assaming that

o = QP! 4.1)

where () is & constant vector, and p is a complex number.

We shall seek the solution of the boundary problem {1.8) and (1.3) in a form in which, for
v K1, the dependence of time is expressed by exp {pt). Similar solutions were analysed
in [3 and 4].

As before, the asymptotic solution will be sought in the form given by (1.9). It will
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be constructed in a form which, for v » 0, becomes a potential flow of a perfect fluid. It is
necessary to assume in this case that a =0 and v° =V¢°, where ¢° is defined by the
previous formula (1.13), while other notations are the same as in par. 1. Functions w* and
w, are defined by the previously established equations (1.19), and conform to boundary
conditions as follows

w* =@ X r —J¢° when a¢ =0, w*, w, >0 wheng — o0

The solution of Equations (1.19) which satisfies the above boundary conditions, and
the dependence of which on time is expressed by exp {(pt), has the form
W = (@ X r — Ug°)e? %, w, = Div (Vo* —a xr)e’ P¢/ VP
We choose here the value of \/;; for which Re V;) < 0.
Changing the variables to { and w ; ve obtain, similarily to (1.22)
weE m, & 0= [0() X1 — T (r, D]exp(VpV) (r = r &, m, 0)
we (8,1, L ) = V] p Div [Ve° (v, ) — @ () Xrlexp (Vv D)

We note that the dependence of the functions ©, ¢°, W*, and », on time is expressed
by exp (pt). For the function ¢! harmonic in D we have, by virtue of (1.23) and (4.2), the fol-
lowing boundary condition

(4.2)

o v (&m0 H  Divie@xr—ven ] o, ¢
on v V7
Hence, using (1.24), we can write
= — (@Y, + 0¥y + &%) / Vi (4.3)

Thus the required asymptotic solution is expressed by equations similar to those

of (1.27)
u= Ve + vive + w, = =@ —vier+C()

where ¢° w, and g1 are defined by the formulas (1.13), (4.2) and (4.3).
The kinetic moment K (2.2) is computed in the same manner as in par. 2. We have, as
in formulas (2.5) and (2.8)
K=1I10+K* K*=— Vrn/pBo (4.4)

3. Oscillations of a body containing a fluid. We shall now deal with the analysis of
oscillations of a body containing a fluid, on the assumption that the initial motion of the
fluid is potential (a =0 and b = 0), We shall further assume that either the motion of the
point O is uniform and rectilinear (a particular case of this is when the point O is
stationary), or that the point O is the center of inertia of the system. The equation of
moments (2.1) can then be written, taking into account (2.5}, as of (2.5) , as follows

.o+ K¥ =m, (5.1)

We assume that the rigid body with the fluid represents, in the absence of viscosity
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effects (K* = 0), a conservative system which has a position of equilibrium, and that the
potential energy of this system in the neighbourhood of its position of equilibrium is
expressed, with an approximation to the infinitesimals of higher order, by a homogeneous,
positive definite quadratic form of its deflections from the position of equilibrium. In this
case, as we know, the equilibrium is stable. We shall limit our analysis to small (linear)
oscillations in the proximity of the equilibrium position.

We can introduce on these assumptions for a conservative system (K* = 0) a system
of generalised normal coordinates ¢,, g, and g,. Vector @, in the case of linear oscillations,
is related to the derivatives of the normal coordinates by

o=Aq (5.2)

where A is a certain nondegenerate constant matrix, and g is a vector with the compon-
ents ¢,, ¢, and ¢,. The quadratic form of kinetic energy 1/, (I.@)-@ is-represented in
normal coordinates by 1/o(q -q’). [14].

From this, by virtue of Equation(5.2), we obtain the matrix equation
A'IA = E (5.3)

where the prime denotes a transposed matrix, E is a 3 X 3 unit matrix,

For a conservative system {K* = 0) the linearised equations of motion are expressed

in normal coordinates by
qg+D.q=0 (5.4)

Here D is a diagonal matrix with A2 as its diagonal elements where A; > 0 represent
the natural frequencies of oscillation 01 the conservative system (j = 1, 2, 3). Moment
of external forces with K* =0 is obtained from Equations (5.1), (5.2) and (5.4)

m,=I.0' =IA.q" == —IADq (5.5)

We assume in accordance with {5.5) that the moment m, depends only on coordinates
q also when K* # 0. The equation of motion {5.1) by virtue of (5.2) and (5.5), then becomes

IA.q"+ XK* - IAD.q =0

Using equation (5.3}, we multiply this equation by A “to obtain
¢+AK*+D.q=0 (5.6)

Equation (5.6) will be transformed into a system of integro-differential equations, if
we substitute into it the expression for K* from (2.8) which, by virtue of Equations (5.2)
and b =0, becomes

t
: g (v)dv

T—

K* = BA

to
As the components of tensor B are propertional to the small parameter \/?; {see (2.12)),
the second term of (5.6) represents a small perturbation. The solution of the system of
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Equations (5.6), or {2.1) can be obtained either by the method of small parameters, or
numerically. We shall consider here one important class of particular solutions.

The most interesting cases are those of perturbations in the natural oscillations of a
system induced by viscosity effects. If an unperturbed system (K* =0) is in its j-th mode
of characteristic oscillations, all coordinates, with the exception of g, are equal to zero.
We shall consider the motion of a perturbed system oscillating close to the j«th character-
istic oscillation of such a system without perturbation. We can, therefore, assume that all
coordinates, with the exception of g, are small. In the first approximation with respect to
parameter \/;1 it will be sufficient to retain the terms dependent of g only in the perturbing
term of the j-th equation of the system (5.6). We shall seek the expression for g {#) in the

form

g; (t) = C;eP;

where C. and p; are constants. Then, taking for K* the expression from (4.4), and with
regard to formu{a (5.2), we obtain the j-th equation of {5.6) in the form

C,p%e" — YV n]p,C,p2 (A'BA), " + ACie" =0

We assume here that Re V—ﬁ, < 0, while the index jj indicates the j-th diagonal
element of the matrix A 'BA. From this we derive the characteristic equation for the de-

termination of exponent P;
P2+ A2=Vn/p, p?(A'BA), (5.7)

Next we shall find the roots of Equation (5.7), approximating the roots * i\ . of the
characteristic equation of the unpertarbed system. Let us substitute into (5.7)

p; = L ik + 9§
where 8, is an infinitesimal of the order of magnitude of the components of the tensor B.
From (5.7) we obtain the first approximation of BI.

b — V' (+ih;) (A'BA);
! 2VE,

Selecting in (5.8) the branch of the root for which Re V' + iA; < 0, we finally
obtain

(5.8)

) ) h; (1 4+ ) (ABA),
p;= + l’&j + 65 = :f:lkj———]-/—n-’—(z—j:y—.g_(%—‘)ﬂ (5.9)

Matrix of the tensor B is symmetric, as was shown in par. 2, and defines a positive
definite quadratic form. But the matrix A ‘BA has the same properties. Therefore, all
diegonal elements of matrix A ‘BA are positive. Hence, it follows from the formula (5.9)
that the presence of viscosity has the effect of introducing into characteristic oscillations
a damping decrement (Re p, <0), and of decreasing the characteristic frequency by the
amount equal to that decrement.

We shall consider a simple example. Let the oscillations of the body be restricted to
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plane oscillations about a fixed axis which we select as the Ox, axis. The kinetic energy
of this system, in the absence of viscosity, is 1/, /;;0? , where I;; is the moment of
inertia of the body, with its cavity filled with a perfect fluid, about the axis Ox;. The
transition to normal coordinates is effected by means of the scalar functionw =4/ VT,

similar to (5.2). Instead of formula (5.9), we then have

p=ih— [Vak (1 + )Byl/ 2V 214y (5.10)

where A is the characteristic frequency of oscillation of the body in the absence of vis-
cosity, and B,, is the component of tensor B corresponding to axis Ox;.

If the oscillations are due to the force of gravity (the body in this case is a pendulum
with a cavity completely filled with a fluid at large Reynolds numbers, then

A=Vmgl/ls (5.11)

where m is the total mass of the body and the fluid, g is the acceleration due to gravity,

and ! the distance of the center of inertia from the axis of suspension Ox,.

Plane oscillations of a pendulum with its cavity filled with fluid were analysed in
[4], where the cavity was assumed to be a body of revolution about an axis parallel to the
axis of suspension. For the purpose of computation of the moment of inertia I, it can be
assumed in this case that the mass of fluid is concentrated on the axis of the cavity,

Tgy=1,+ m'1? (5.12)

where I, is the moment of inertia of the rigid body relative to the axis Ox;, m” is the mass
of the fluid, and !’ the distance of the axis of the cavity from the axis Ox;. A substitu-
tion into Formula (5.10) of the expressions for A from (5.11), for I5; from (5.12), and for

B,, from (3.8), yields the result obtained in [4].
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