
MOTION OF A BODY WITH A CAViTY FILLED WITH A 
VISCOUS FLUID AT LARGE REYNOLDS NUMBERS 

{DVIZ~~ENIE TELA S POLOSTIU, ZAPOLNENNOI VIAZKOI ZHIDKOST’IU, 

PRI BOI’SHIKH CBISLAKH REYNOLDSA) 

PMM Vol. 30, No. 3, 1966, pp. 476494 

F.L. CWERNOUS’KO 
UVfoscowj 

(Received October 22, 1965) 

The problem of motion of a rigid body with a cavity filled with a viscous fluid 

has been the subject of a number of papers (for example [l to 53). An analysis 

of small oscillations of a viscous fluid at large Reynolds numbers, based on the idea of 

the boundary value, is given in [3]. The same method is used in [4], where 
small oscillations of a pendulum with an axially symmetric cavity filled with a viscous 

fluid at large Reynolds numbers were considered. 

In this paper we consider the motion of a rigid body with a cavity of an arbitrary form 

completely filled with a viscous fluid. Two assumptions are made: (&that the amplitude 

of motion is small, so that the Navier-Stokes equations can be linearised, and (d-that the 

Reynolds number is large. The linearised NavierStokes equations are solved hare, sln&rly 

to [3 and 41, by the method of the boundary value. The viscosity of the fluid in the cavity 

introduces additional terms into the equations of motion of the rigid body. It is shown 

that the dependence of these terms on the form of the cavity is expressed by a symmetric 

tensor, similar to the mass tensor, and representing dissipated energy. Components of this 

tensor are expressed by the Joukowski potentials only [I], i.e. by the aolation of the 

problem of motion of a perfect fluid in a cavity of a given form. 

The computation of the motion of a rigid body with its cavity completely filled with 

a viscous fluid, with the assumptions stated above, requires therefore: (1) the deter- 

mination of the Joukowski potentials for a given cavity (these are already known for a 

number of cavity forms) ; (2) the determination, by means of integration of the Joukowski 

potentials, of the associated moments of inertia and of the components of the. tensor re- 
presenting dissipated energy ; and (3) the solution of equations of motion of the rigid 

body containing the additional terms. Problems (1) and (2) can be solved in advance for a 

large class of cavity forms. The process of solving this problem is, therefore, only a 

little more complicated than in the case of a cavity filled with a perfect fluid. [I]. We 

should note that similar results were arrived at in [5] by an entirely different method. 

General equations of motion of a fluid filled body are derived for stated assumptions. 
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Certain specific forms of cavity are analysed. The analysis relates to small oscillations 

of a body having its cavity filled with a viscous fluid. 

1. Analysfs of the Navier-Stakes equations. The motion of a rigid body with a simply 
connected cavity D, completely filled with a viscous incompressible fluid of density po, 

is considered (fig. 1). 

The equations of motion of the fluid have the form 

dua - =1- ~+vAua-+?U, 
lit 

divua=O (1.1) 

Here, t denotes time, ua is the absolute velocity of fluid particles, p is the pressure, 

v is the kinematic viecoeity, while U fr, t) is the assumed potential of mass forces. The 

radius vector r shall always have itsorfginat pofnt0, arbitrarily chosen, but rigidly oon- 

netted with the body. The absolute radius vector of the pole 0 is denoted by Re. 

Let us introduce the velocity u = II* - dRo / dt relative to pole 0, and re-write 

Equations (1.1) as follows 

Ut A- (UV) u =--vq+Y~u, divu=O, g=d+U+r* 3 (1.2) 

Here index t denotes a psrtiel derivative with respect to time, 

and q is a new function which is to be determined. The boundary and 

initial conditions for the system of eqnations (1.2) are given by 

u=o Xr on s (1.3) 

u=uo(x) when t=t, 
(1.4) 

Here, o (t) is the angular velocity of the rigid body, and S is 

the boundary of cavity D. The initial velocity uo(t) is subject to 

conditions 

FIG. 1 
div ug = 0 in f), ug= m(tJXr on S (X.5) 

Let L be a characteristic dimension of the cavity, and 2’ a characteristic unit of time, 
for example, the oscillation period of the body. The Reynolds nnmber is assumed to be 

large 

R = L’lv-T”> 1 
(1.6) 

We further assume that 1 u,, 1 - oL. For the purpose of linearising equations (1.21, 

we shall assume that everywhere 1 (uV) U I<( 1 II~/. 

AS outside the boundary layer the order of magnitude is lU 1 -aL, and v -L-l , 
it follows that 1 u v 1 -+w. Within the boundary layer various components of vectors u 

and v are of different orders of magnitude (see below), but here also / UC7 f -0. 

Therefore, the condition of linearisation has the form 
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The dimensioniess parameter oT is of the order of the angular amplitude of oscifla- 

tion of the body. We assume in the following that conditions of (1.6) and (1.7) are fulfilled. 

Condition (1+7) permits the linearisation of Equations (1.2) 

ut= --q+vAu, div u = 0 (1.8) 

For convenience of notation we shall select units of length and time, such that L + 1 

and T * 1. Then the condition (1.6) meatis that v=K 1. We shall use the boundary value 

method [6] for sofving the boundary problem (1.8), (1.3) and (1.4) for smal1 vaiues of 

parameter v in higher derivatives. We assume 

u=v+w, v = v” + +v= + Yva + * . . 

q=g+ft, g = go + v% g’ -j- vg2 + . . . (1.9) 

Upper indices denote the order of approximation. Here w and h are functions typical 

of boundary value problems [6], which rapidly tend to zero with the increasing distance 

from the cavity walls. 

We select functions V’ and go so, as to satisfy the equations of motion of a perfect 

fluid, the condition of absence of flow through the wall, and the initial conditions (1.4). 

The boundary problem for V’ and go is expressed by 

vt” = - ‘t7g”r div v” s 0 in D 

v'n=(w x r)*n on 8, v” = ug when r = ra 
(1.10) 

Here n is the unit vector of the inward normal to S. In order to solve problem (1.10) 

we shall, first of all, determine vector a (r) in D from 

curl a = curl Uo, diva==0 inD, an=0 onS (1.11) 

It is known [7], that the conditions (1.11) uniquely determine vector a. It follows from 

(1.10) and (1.11) that 

[curl (v” - a)lt = 0, curl (V’ - a) = Owhen r=ro 

Consequently, within the space B and for t >/to, the vector va - it is a potential one. 

We can therefore write V* = zs -/- 7 cp", and arrive, through (1.10) and (Lfl), at the 

Neumann% problem for the function q” (r, t) 

&ro = 0 in D, &p” / dn = (oXr).n on S (1.12) 

Conditions (1.12) determine the harmonic function q” with an approximation to an 

arbitrary function of time. From the first equation of (1.10) we have g” = - (pro + C” (t), 

where Co(t) is an arbitrary function. It is clear that, with account being taken of (1.11) and 

(1.12). functions V” = a + VT” and go satisfy the equations and boundary conditions 

(1.10). In order to check the initial condition of (X.10), it will be necessary to prove that 

vector 

al(r) = vO(r, to) - ~0 (r) = a(r) + Vrp” (r, h) - UO (rl 

equals zero within space D. By virtue of (1.111, (1.12) and (1.51 we have 

curl a1 ==0, div al = 0 in D, aln = 0 on Is 
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Hence, a, I 0 in D. 

Thus, the determination of v” requires the solution of the problems (1.11) and (1.12). 

We note that for the most important case of motion starting from rest, we have uo = 0 and 

a = 0. The solution of problem (1.12) can be expressed by the Joukowski potentials [I and 

21 

Here, oi fi = 1, 2, 3) are the projections of the vector 61 on the axes of an arbitrary 

system of coordinates o~r~e~e, rigidly attached to the body. Functions ai satisfy 

boundary conditions 

A@i=OinD, a@,@FZ=(r XII)+~ On S(~=%2p3) (1.14) 

where ei is the unit vector on the axis OXi, 

Functions vt and g” will be made to conform to the equations and to satisfy the 

following initial conditions. 

vtl = - Vg’r d ivvr=:O in D, ~~=Owhent=tu 

It follows from this that curl v1 m 0, in D, for t > t,, and we can, therefore, assume 

that VI = VC$. We then have for the functions ‘p’, and g’ 

nq.+ = 0, g1 = - (Pi’ + C’ (t) in D 

Here, C’(r) is an arbitrary function. We note that functions 

v = v” + YffV1, g = g” + vvag 

satisfy the equation of motion (1.8) in D, with an error of the order of y, and satisfy the 

equation of continuity and the initial condition (1.41, exactly. 

To satisfy the boundary adhesion condition (1.3) we assume, in conformity with (1.9). 

that 

u = v"+ v'W+ w = a + ptp" + v'Q7tp' + w, g = g" + $!lgt + h 
(1.15) 

Terms of the order of v and higher appearing in the expansion (1.91, were neglected. 

Taking into account the equations and initial conditions which functions v*, ~1, g”, gl, 

and g’ fulfill, and substitutingfl.15) into (1.8) and (1.4), we derive the equations and the 

initial condition for functions W, h. 

wt = - VW- VAW, div w = 0 B D, my = 0 when t==to (1.16) 

We see from (1.3) and (1.15), that the following boundary condition must also be 

fulfilled 

W + v’j2Vip’ = W X r - v” on 4s (1.17) 

We introduce a system of curvilinear orthogonal coordinates 5‘. 7 and 6 such that the 

boundary surface S coincides with the surface <= 0, and that any point within S has the 

value (> 0. We denote in this system the corresponding Lam& coefficients by He, II,.,, Bc 
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(without affecting the generality, we assume that Hi= 1 for <= Of, and by wE, w,,,, wC 

the components of the vector w in the above system. 

We write down the equations of motion and of continuity (1.16) in the system of co- 

ordinates E, 1, 5. We then substitute 

5 z ay’tz, lD< = v’llwa 

and seek expressions for WE, Wn, and ~lo in terms of c, 7, u and t in the region D, of the 

boundary layer, adjacent to surface S. In the region D, we have 5 - ~‘/z, and cx + 1, 

and hence 

NC = &” + 0 (V*lx), R* = HIFo + 0 (Y’/Z), z& = 1 -i- 0 @‘/a} 

where NE’, and H,” are the values of Lamd coefficients on the surface S, i.e. where 

r= cz = 0. We shall simpIify the equations of motion and continuity in the region I), by 

taking into account these assumptions, and omitting in these equations terms of the 

order of v % 

(1.18) 

It will be seen from equations (1.18) that h is independent of CL But h is a function 

typieaf of the boundary value problem, and h + 0 when U. + DO. Hence h L 0, and we can 

rewrite the last three equations of (1.18) as folfows 

aw* @w* 8m.s 
at= -m-’ Divw*+- =O (1.19) 

Here, W* is a two-dimensional vector with components wE and w,, and Div denotes 

a two-dimensional divergence operation, computed from the values of the two-dimensional 

vectors on surface S (in this computation CL is considered to be a parameter). The bound- 

ary conditions for w* is found from (1.17) and w = w* + 0 (y’ll), with the accuracy of 

the order of V% and is 

w*=oxr-v* for ct =O 

It follows from the boundary condition (1.10) that the right-hand side of this equation 

represent a vector, tangent to the surface S. Vector W* must afso satisfy the initial zero 

condition (see (1.16)) and the condition at infinity 

w* = 0 when t=to, w* -+ 0 when c~--+oo 

The solution of the thermal conductivity equation (1.19). with the stated boundary 

and initial conditions, has the form [8] 

t 
w* zzz a ’ W(2) X r-vO(r, r) I -P &-:) dz 

(1.20) 

2 G1, (t - zp 

Substituting fl.20) into the second equation of (1.19) and integrating with respect to 

u with we -+ 0 when a + 00, we obtain 
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t 
(1.21) 

Reverting to the variebles t = a~‘/*, and WC = V1I’Wa, we rewrite the eqaations(l.20) 

and (1.21) as follows 

(1.22) 

Div [O(I) x r-v’ (r, z)] - sa 
(t - r)% exp 4v (t - 112) 

dr 

Here the position vector r and the inward normal n originate at the point Qt q on the 

surface s i.e. at c= 0. 

By virtue of (1.221, the projection of (1.17) on the normal n to the surface S is 

t 
Div [vO(r, s) - (u (7) x rl d+ 

(f - *f’s On ’ (1.23) 

In this way we have obtained for the fnnction (~1 hanuonic in D, Neuman’s problem 

with the condition (1.23). The solution of this problem can be expressed in a manner 

similar to that of problem (1.12) by a harmonic function independent of time. 

Let functions yu and qi be the solutions of the following boundary problems 

AY, = 0 in D, (3uPo ] dn = Div a on A‘ (1.24) 

/IA?+ = O B D, dY~/dn=Div(VQ-eei xr)onS (i=1,2,3) 

Then it can be written 

Taking into account Equations v”= a + Vq” and (1.131, we see that function 9’ 

satisfies the Laplace equation and the boundary condition (1.231, and that the initial 

condition ~1 = V$ = 0 for t = to is also satisfied. 

Thus, the determination of au asymptotic solution for the boundary problem (1.81, (1.3) 

and (1,4) is reduced to the following. First, for a given cavity D we have to determine the 

Joukowski potentials ai which must satisfy the boundary problems (1.14) and the functions 

Yi (i = 1, 2, 3), which, in turn must satisfy the problems (1.24). We note that for any 

vector field p (r), defined on a closed surface S, the following equation is valid 

$ 
DivpdS= 0 (1.26) 

S 

and is easily proved by means of the Gauss - Ostrogradskii theorem for surface vector 

fields [91. Therefore Neumann’s problems (1.24). as well as those of (1.14) have unique 
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solutions with the accuracy up to the constant term. 

If at the moment of time t = to we have a flow with vorticity it will be necessary to 

determine, in addition to Qi and \yj, the vector function a in accordance with conditions 

(1.11), and the function qo in accordance with (1.24). Functions Qi and \yi depend on the 

form of cavity D only, while functions a and y,,, also on the initial distribution of veloci- 

ties ~a. We note that all these functions are independent of time. 

The asymptotic solution of the problem (1.81, (1.3) and (1.4) is expressed, in accord- 

ance with above formulas, by 

u = a + Vp” + V’l* VT’ + W, q= - cpt” - V”* ‘+‘t’ +- c (t) (1.27) 

where C ($1 is an arbitrary function. Functions cp”, fpl, and w are defined here by formulas 

(1.131, (1.25) and (I.221 in which v” = a + V6b Outside the boundary layer, formula 

(1.27) approximates the exact solution of problem (1.81, (1.3) and (1.4) with an error of 

the order of v . Within the boundary layer itself the functions (1.27) define the component 

of the vector u normal to S with the error of the order of v , while for the function q and I 
the component of vector U, tangent to S, this error is of the order of vs. 

We shall now indicate the time interval in which the solution arrived at is valid. It 

was assumed that in expansion (1.9) coefficients v“, VI, etc. were of the same order of 

magnitude. Since 1 U, 1 --L. L - 1, and T w 1, it follows from (l.lO), (1.11) and 

(1.13) that 1 v” 1, 1 a I, and cp” are of the order of magnitude of w . We therefore conclude 

that, by virt;e of (1.24) and (1.251, \Er, w, and consequently ‘pl -& I/t - t,. In 

order to have either V* and v’, or cp* and (p’, of the same order of magnitude, we must have 

t - t, * i. Thus, the obtained solution is generally valid in the interval of time of 

the order of the period T of oscillation of the body. 

Let us assume that two following conditions are fulfilled: (1) at the initial moment 

the flow is potential, i.e. curl uo = 0 and consequently@, = 0 and Ye = 0; (2) functions 

for all values of t (toet<~) are of the order of magnitude of o. In this case the 

motion of the body consists of oscilIations about a certain central position, and function 

(p’ of (1.25) will b e of the order of o even when t + m. In this important case the solution 

arrived at is valid, with the accuracy given above for all t > t,. If, however, these 

conditions are not fulfilled, the motion will be essentially vertical. Such motions in 

absence of viscosity were considered in [lo]. 

2. Equations of motion of a body with fluid. The equations of motion of a rigid body 

with a cavity completely filled with fluid cau be written as follows 

nR;* -_: F, K’ + rn (R, - R,) s Roe* ~-- m, (2.1) 

Here, m is the mass of the body with fluid, R, and R. are the absolute position 

vectors of the center of inertia C of the system and of the pole 0, rigidly connected to the 
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body, F is the principal vector of all external forces acting on the body, mo is the prin- 

cipal moment of these forces about the pole 0, and the dot above a symbol indicates a 

derivative with respect to time. We denote by K the kinetic moment of the whole system 

in its motion relative to the pole 0 

Here the first term represents the kinetic moment of the rigid body (Jo is its tensor of 

inertia relative to the pofe 0). and the second is the kinetic moment of the fluid in the 

cavity. 

Equations (2.1) must be supplemented by kinematic relationships (for the direction 

cosines, or Euler’s angles), which in this case are the same as for a rigid body without 

any fluid. The derivation of equations of motion is reduced, in this manner, to the deter- 

mination of the kinetic moment of the relative motion of the fluid (second term of (2.2)). 

We shall compute this kinetic moment with an error of the order of % V. For this 

purpose we shall use u as given in (1.27). In addition to that we have in the region of the 

boundary layer Dt w = w* + 0 (Y’/P). As the volume of D, is 0 (Y’~s), we can 

assume that in this region w = w *. This will give an error of the order of v when 

computing K from (2.2). We assume that outside D, w = 0. We then have 

(2.3) 
+ PO s r x w* dV + 0 (Y), K*-=po rxadV 

Ifa 
s 

D 

It is evident that K” is a constant vector. The third term of (2.3) represents the 

kinetic moment of potential motion of the perfect fluid about the point 0. By virtue of 

(1.13) and (I.I4), this term can be expressed by Jaw, where J is the tensor of associated 

masses [l and 21. Components of the symmetric tensor J (associated moments of inertia) 

are 

(2.4) 

(i.,i= i, 2, 3) 

We reduce the fourth term of (2.3) to a surface integral with the aid of equation 

rXvr$ = - curl (rep’), and then substitute into it the expression for (p’ from (1.25) 

We substitute the expression for w * from (1.22) into the fifth term of formula (2.3), 

and replace the volume integral over D, with the surface integral over S and the integral 

with respect to ( from 0 to 00. This is permissible because W* rapidly tends to 0 when 

5 > Y’fZ. After the integration with respect to 6, this term becomes 
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The kinetic moment (2.3) can now be written in the form 

K==I.o+K”+K* (I = Jo + J) k-L5) 

Here K* is the sum of the last two terms of Formula (2.3) which by virtue of the above 

relationships and of Formnlae(1.131 and (1.25), equals 

(2.61 

j=l s 
Let us now introduce new notations 

and rewrite the formula (2.6) as follows 

Here b is a constant vector, and B is a constant affine tensor with components B . . . 
‘I 

In accordaace with the boundary conditions (1.14) we have 

Substituting this expression into Equations (2.71, applying Green’s theorem, andueing 

the boundary conditions (1.241, we obtain 

b_dY 
--$T-, §4 --rxa- i e~~Yo)dS = 

i=l 

(2.9) 

Pot = Ts H ei.efr2 -(Q*T)(ej*r) + (F::e~)~C~~j-((l)j I1iv(O~lrj--e,i~. r) cl.\’ 
1 
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For any given vector field q (r) and scalar function f(r) on the surface S the following 

formula is valid [9] 

Div fq = f Div q + q-Grad f 

Here Grad denotes the operation of taking the gradient along the surface S. If the 

function f is also defined outside S, then the Grad operation is related to the gradi@ in 

a three-dimensional space by the expression Grad f = Vf - 0 (LJf f With these 

equations and formula (1.26) we find, that for any closed surface S 

$f Div qdS = $(A$--vf)qds 
S S 

We shall use this identity (2.10) for the transformation of integrals (2.9). Taking into 

accoant the fact that on surface S an= 0, we obtain for vector b 

A similar transformation of the second integral of (2.9) yields 

The expression in the second square brackets of the last integral is zero by virtue 
of (1.14), and the expression in the first bracket can be tramformed by using tha following 

known identity from vector algebra [?I 

Wt~e3bWdWej) = (~xc~+(Px~,J 
Finally we obtain 

(2.12) 

It follows from this that B is a symmetric tensor (Bii = Bj ). It can be brought into a 

diagonal form, i.e. we can obtain Bii - -0 for I # j, by a i saitab G selection of the coordinate 

system or,x+va. Since in any system of coordinates Bii > 0, it follows that the eigendues 

of the tensor B are real and positive. Dependence of the components B ., as well aa of 

Jy of the tensor (2.4) on the cavity form is expressed by the Jonkows8potsntiala ‘pi 

For the computation of tensor B it is sofficisnt to determine the fnnctions af sad calculate 

the integrals (2.12). Vector b is further deptendent on the vector fnnction a. We note 

that the computation of b and B does not require the solution of the boundary problems (1.24). 
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Let US now consider the effect of altering the poleO,on the vector b and tensor B. 

Let points O’and 0 be stationary with respect to the rigid body. We denote the vector 

connecting these two point by d (t) = 00 ‘. We then have, for the relative velocities and 

position vectors of points of the fluid, the following expressions 

r’ = r - d(t), u’ = u - d’ (t), u,,’ = u. - d’ (I,) 

Rere uo is the initial velocity, and the primes indicate values relative to the pole 0 ‘. 

It follows from (1.11) that in this case a’ = a. The boundary conditions (1.14) for the func- 

tions @f and @; with respect to the poles 0 ‘and 0 are related to each other by 

ii@‘i/ ijn = &Di : an - (ei X d).n on S (i = 1, 2, 3) 

Consequently, we have for @i and Qi, everywhere in D 

cDi’ = ~3~ - (eix d).r, r’ X ei + VQi’ z= r S ei -+\YQi 

It follows immediately from these equations and from Formulas(2.11) and (2.12) that 

b ‘= b and B ’ = B, i.e. that vector b and tensor B are invariant under the change of the 

pole 0. Consequently vector K* is also independent of the pole, which can therefore be 

arbitrarily selected. 

We note that this approach is applicable without basic difficulties to multiply- 

connected cavities. If at t = to the flow is potential, asis assumed below, then the analysis 

of the multiply connected cavities does not differ at aI from that of a simply connected 

cavity. 

Thus, the kinetic moment K is expressed by the formula (2.5) where K* is defined 

by the formula (2.8), and b and B by formulas (‘2.11) and (2.12). The substitution of K into 

Equations (2.1) yields a system of integro-differential equations of motion of a body 

filled with a fluid at large Reynolds numbers. These equations are generally valid in the 

interval of time t - to w 1 with an error of the order of V. If however, two conditions 

formulated at the end of Chapter 1 are fulfilled the validity of these equations is extended 

to t - to > 1. In this most important case, considered in the following, we have K” = 0 

and b = 0, while the magnitude of HZ is, for all t >, te of the order of vs. as compared to 

1.0 given by (2.5). This aspect makes it possible to solve the system of equations (2.1) 

by the method of small parameter. 

We note that formulas (2.5) and (2.8) make it possible to derive equations of motion 

for more complicated systems than a rigid body with a cavity filled with a fluid (for 

example, a system of bodies with fluid filled cavities). 

3. Cetialn specific cavity forms. We shall now determine tensor B for certain specific 

forms of cavity, and at the same time establish expressions for tensor J. 

1. Let Ox, be the axis of symmetry of the cavity. Then the Joukowski potentials by 

virtue of (1.14) have the following properties. 

@i (21Y x2, 5s) = - C+ (-51, -za, za) (i = 1, 2), @a (21, 50, 53) = @a (-51, -22, la) 

In this case we obtain from (2.4) and (2.12) Ji, = 0 and Bb = 0 for i = 1, 2, i.e. the 

axis of symmetry of the cavity is the principal axis of the tensors J and B. If all the three 

axes Uzt, 0x2, and Ox, are the axes of symmetry of the cavity, then the tensors J and 

B will have a diagonal form on these axes. 

2. We shall consider a cavity enclosed by an ellipsoid 
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x1251+ + zgaa~-z + xslas-a = 1 

In this case the Joukowski potential @s is [l] 

Q)a = [(ala - aa*) I (a? + 4)lzrs (3.1) 

while a>, and $ are obtained by cyclic transposition of all indices. 

The associated moments of inertia (2.4) are expressed by the known formula [I] 

Jzs = 4'15w,~15*% 6% ' - US*)" (~1' $- ~2')~'~ Jij = 0 when i # / 

where Jtr and J,, are obtained by cycIic transposition of indices. Substituting (3.1) into 

(2.12) and introducing into the fatter new variables 

zr = aI sin u cos Y, =a = ua sin 26 sin B, zz = az eos u 

we shall reduce the integral (2.12) to a double integral 

F(al, a~)= 

,,, (3.2) 

du dn 

We note that Bii = 0 for i f: j, and B,, and B,, are obtained by cyclic transposition 

of indices. 

Function F (CQ, ax) is dependent on two parameters U, and CL,, and decreases 

monotonefywith the increase of either of them. Since F (a,, U& = F (q, a,), it can be 

assumed that al >, a,. 

The integration of (3.2) with respect to u can be carried out in terms of elementary 

functions with the result 

‘Im 

G (2) dv, z - cos” v sina v 

0 al2 
+- 

a2 

z - 

G(z)=qz-q 
1 

2 (32 - 4) i + I/i-_z 
- 32--Z+ yrl-_z In V/z 1 when a61 

(3.3) 

2 
G(z)=g(z-q 32-22 i/z sixl t 

z(3z---4) * _-l /z--1 
\y whenz>,i 

When z + 0 the function G (a) is continnoas;when z + 0 we have G (z) -+, % I, 

G(1)=2/3,andwhenz_rmwehave G (z) -)r z/ranz% . These formulas make it possible 

to determine function F (aI, a,) when certain relationships between the parameters U, and 

Uz exist 

F (a, a) = G (a-% F (1, 1) = =J9 

F (al, u$ = 1/&-8 for aI > COIlSt > 0, a, --t 0 

F (aI, ar) = ‘I8 (al-’ -k a~-*) for al, aa + 00 

We shall analyae with the aid of these formulas certain particnlar forma of ellipeoide. 
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For the ellipsoid of revolution we have 
& =z: 4p0 JfG Q~~~-~C (a$a-z) (a zz al I== 02) 

where the function G (z) is defined by (3.3). 

Using the assymptotics of function C (z) 

we find, for a strongly elongated ellipsoid 
of revolution 

&IS=~/ 4npo dniiasas 

For a strongly flattened ellipsoid 

These formulas are easily derived by 

2 a, cyclic transposition of indices in Formulas 
(3.2), and the use of the asymptotic proper- 
ties of the function F. In particular, for a 

FIG. 2 strongly flattened elIipsoid of revolution 
(ax = a, = a, a& a) we have 

311 z&&z 4po jG a%@ 

Bs=pa $%a4 

Finally, in the case of a spherical cavity of radius u we find directly from (3.2) 

Bti=*/ga~%~ (i=1,2,3) 

In the general case (at # 4) , function J’ @i, Q) was determined by calculating the 

quadratnres of (3.3) on an electronic computer. Values of the function F, calculated for 

several values of U, and CX, are given in Table 1. Function F (aI, &) is represented dia- 

grammatically on Fig. 2 for fixed valnes of U, with NX+CL, , with the values of 4 given 

at each line, aud the broken line repreeenting ~(a,, at), 

x*: 
0:5 

590.0 - 311.8 74.11 258.7 36.16 252.5 32.57 251.1 31.79 250.7 31.59 250.6 31.56 
- - 4.891 2.621 2.218 2.124 2.111 

:. - - - - - 0.6667 - 0.3665 0.1036 0 0. * 3047 c-w499 0.2970 n nt9u _.____” -.-_ I__ 
0.01168 1 0.007068 150 I - - I ‘- 

- I - t - - I - - - I 0.002038 

3. Let the cavity D have the shape of a solid revolution. Let the axis Ox, be the axis 

of rotation, and let ua introduce cylindrical coordinates p, tp, and I 

3 “Pi% += psincp, x,= 2 

In this system of coordinates the boundary conditions (1.14) will have the form 
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(3.41 

a@, / an = - sin cp ( znp - pn,), a@, f Lh = cosv (znp - pnJ, a&/an = 0 

where no and nr are the projections of the unit vector n on the p and z axes respectively. We 
note that in this case the normal n lies in the meridian plane cp = Const. It will be seen 

from Equations (3.4) that the Joukowski potentials can be sought in the form of 

cb, = - sincp f (p, 4, Qa = cow f (P, 4. a,,=0 (3.51 

The bonndary problem for the function f (p. Z) is obtained from (1.141 by taking into 

account (3.41 a8 follows 
(3.61 

Here the two-dimensional region A is the intersection of the cavity with the half- 

plane cp = cond, and r is the boundary of this region. If the axie of rotation intersects 

the cavity D, then the boundary of region A contains segments of the axis p =O. In this 

case these segments are not included in the countoar r, and the condition of boundedness 

of function f is substituted on them for the bonndary condition (3.6). It is not difficult to 

compute the expressions of integrals (2.12) using the formules (3.5) 

r X er + VQr = e, sincp case, (-to + p-rfi -I- e, (2 - ain~& - 

- cosz cp p-lf) - e, sin cp (p -I- fr f 
(3.7) 

A similar formula is obtained for r X e, -j- VU), . We substitute (3;7) into (2.12) and 

replace the integration over the surface of revolution S with the integration with respect 

to angle cp (from 0 to 2771 and along the curve I?. After elementary integration with respect 

to cp and some simple transformations we obtain 

Bea = 2po V’iG 

s. 

pa dl, B,j =O ti #i) 
(3.81 

where the indices p and z denote partial derivatives. 

We note that the component B,, is independent of f. It differs from the moment of 

inertia of the surface S with respect to the axis of rotation Ox, by a constant f8CtOr only, 

and can be easily calculated for various cavities of the form of solids of revolution. It is 

possible, in particular, to compute from (3.8) the component B,, for an ellipsoid of revoln- 

tion and for a sphere. 

Computation of B,, and B,, requires the prior solution of the bonndary problem (3.6). 

We note that, if we assume 

f (Pt sf = PO + #l fP, 4 

then the first of the integrals (3.8) can be simplified and rednced to 

(3.91 
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It follows 
conditian 

from (3.6) and (3.9) that the unknown function satisfies the boundary 

(3.10) 

1 a afl ( 1 @fl fr 
7 ;?“F; p q- -I- dz” 

-_-.-““.“..=~ 
p” in A, npflp+fi,(2p + f,,)=O on r (3.11) 

Let us assume that the rigid body, with its cavity of the form of a solid of revolution, 

is moving in a plane, and that the axis of the cavity executes a translatory motion (this 

particular case was considered in [4] 1. In th’ rs case only one component of the tensor 8, 

namely BS5 will enter the equations of motion of a body with fluid. 

It is also possible to change the integrals (2.4) to cylindrical coordinates and sub- 

stitute into these the expressions for a, from (3.5), A simple transformation yields integrals 

similar to those of (3.8) 

It is not difficult to verify that Expression (3.12) is equivalent to the formula arrived 

at in a different manner on page 86 of El]. 

4. We shall cansider a cylindrical cavity of radius s and height h. We select the 

origin of the system of coordinates at the center of symmetry of the cylinder, and make 

Ox, the exia of rotation. Tba shape of the region A of the plane pr is, in this case, a 

rectangle the 0 < p < a, and 1 z ( < h, while the curve r consists of segments 

P =a,jal<hand z= &h, 0 f p < a. In accordance with (3.8) we have 

(3.13) 

Function fi (p , z) satisfies Equation (3.11) within the rectangle A, On its periphery, 

the boundary conditions of (3.11) apply together with those of boundedness of function fi 

on the axis- which are 

afr afr 
-zxz- 

a2 
2p when 121 =ft, ap;;=O whenn=u, I#if<mwhen P=O (3.14) 

Ws shall seek the aalution of Equation (3.11) with boundary conditions (3.14) in the 

form given in [l and 111 

Here 1, is the Bessel function, and c,, and ,& are constants. It is not difficult to 

prove that for any values of c,, and {n, function ft of (3.15) satisfies Equation (3.11) and 

the condition of boundedneas for p = 0, 

The boundary conditians (3.14) will be satisfied by a solution of (3.15) far p = a, if 

the consecutive positive roots of Bessel’s function are taken for 6, 

Jt’G,)===O, tn=1,2,. V.;o<gt<I;p<...) (3. I61 
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In order to satisfy the bonndary condition (3.14) for /z/ = fi the coefficients e 

are defined as follows [l and 111 
n 

4n* 

‘n z - 5,, (C,,’ - 1) C+I (:,,I1 / a) J. (C,,) 
(3.17) 

In the case of a circular cylinder the integral (3.12) becomes 

h a 

J,l L= Jr. = 2np,,a 
s 

zf (a, z) dz - ‘JZ~,, 
s 

pLIf (p, A)dp 

0 0 

We substitute into this formula f @, z) from (3.9) end fi from (3.15). and calculate the 

integrahs, taking into account the formulas (3.16) and (1.171, end the properties of Ressel’s 

function. After the transformations utilising the identities [ll] 

(3.18) 

we obtain the known result given in [l] 

Jxl= J,,=np,a% (H), H= k, 
a 

a(H) = $- HB - $ H + 16 

We shall now write down the expression for the integral (3.10) for the case of the 

circular cylinder, takiag into account the boundary conditions (3.14) 

After integration by parts of the first term of the first integral, and transformations 

utilising equation (3.111, this expression becomes 

0 

&I = Bzz = 2p, l/G ( 5 WIZZ Lh P dp + 4a3h + 4a*ft (a. h) + a j (a-W + /I,2&_, dz] 
0 0 

We now substitute into the above ft from the formula (3.15). and integrate each term 

of the obtained series. After the tr~sformatioua which take into account Fo~ulas(3.~7) 

end (3.18) we finally arrive et 

n,, = Bm = 16pfJ $Ga4@ (ii), H=h/a 

P (HI= 
- 35,2 - 1) r=nh (f&H) 

+ 

(3.20) 

Series (3.19) and (3.20) are convergent for any N 30. Numerical values of function 

@ (HI were obtained by summation of series (3.20) on a computer. The roots r, of 

Equation (3.16) were obtained from the tables given in [12] for n < 40, while for n > 40 

they were computed by means of the known asymptotic formula [13]. Function a (H) was 

concurrently calculated from (3.19). Some results are given in Table 2, end presented 
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diagrammatically on Fig. 3 

TABLE 2 

FIG. 3 

The assymptotic values of the functions 

u (H) and @ (H) are found without difficulties 

by using identities (3.18) 

a--‘i,H, @--‘/a ~2 when H-0 

a - r/&la - VeH + a, 

fl- ‘IaH - &, when W + oo 

a0 = 1.977, B. = 0.2ii5 

Constants c&e and pa were determined by 

comparing them with the numerical solution. 
These formulas make it possible to write down 

approximate expressions for the components of 
tensors J and B for a cylinder, when i5 < a and 
h >> a 

The latter formulas yield a high degree of accuracy already for k > 20. Component 

B,, is, in all caseo, determined from the formula (3.131, while frr = 0. 

The Joukowski potentials me known for a number of cavity forms [I and 111. The 

computation of tenaor B for such forms is reduced to the computation of integrals (2.12). 

ConemIly, a prior solution of the boondary probIemn (3.14) is required. 

4. Farosd orcillotloer of ilukl in the cavity. In par. X the motion of fluid in a cavity 

with the initial oondition stipulated by (1.4) was considered. We shall now analyse forced 
oscillations, asanming that 

(d = rise’ (4.1) 

where fi is a constmt vector, and p is a complex number. 

We shall oeek the solution of the boundary problem (US] and (1.3) in a form fn which, for 

Y K 1, the dependence of time is expressed by exp @I. Similar solutions were analysed 

in [S and 41. 

As before, the asymptotic solution will be sought in tits form given by (1.9). It will 
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be constructed in a form which, for v + 0, becomes a potential flow of a perfect fluid. It is 

necessary to assume in this case that a = 0 and V" =';7cp", where 9“ is defined by the 

previous formula (1.13), while other notations are the same as in par. 1. Functions W* and 

wQ are defined by the previously established equations (1.191, aud conform to boundary 

conditions as follows 

w*=mXr--V(p” when a=O, w*, wpy -+ 0 when a + oo 

The solution of Equations (1.19) which satisfies the above boundary conditions, and 

the dependence of which on time is expressed by exp (ptf, has the form 

? pa w*=(coXr--VO(PO)e , 

We choose here the value of <p for which Re l’g < 0. 

Changing the variables to [aad WC We obtain, similarily to (1.22) 

w* (E, rf, l;, t) = lo (t) x r - Vqi” (r, 01 exp ( Vpfvt) (x = x (E, rl, 0)) 

wC (E, q, 5, t) = 1/v I p Div IVq” (r, t) - w (t) x 11 exP t U’P~<) 
(4.2) 

We note that the dependence of the functions 0, cp”, W*, and ZL’~ on time is expressed 

by exp (pt). For the function ‘p* harmonic in D we have, by virtue of (1.23) and (4.2), the fol- 

lowing boundary condition 

Hence, using (1.241, we can write 

Thus the reqnired asymptotic solution is expressed by equations similar to those 

of (1.27) 

U = VT” + v’/*Vrp’ + w, q = - qQ” - v”l rpr’ + c (t) 

where rp”, w, and ‘pl are defined by the formulas (1.13), (4.2) and (4.3). 

The kinetic moment K (2.2) is computed in the same manner as in par. 2. We have, as 

in formulas (2.5) and (2.g) 

K=I.ofK*, K*=- I/qpB.o (4.4) 

5. Oscillations of m body c~&~~g a flofd. We shall now deal with the analysis of 

oscillations of a body containing a fluid, on the assumption that the initial motion of the 

fluid is potential (a =0 and b = 0). We shall further assume that either the motion of the 

point 0 is uniform and rectilinear (a particular case of this is when the point 0 is 

stationary), or that the point 0 is the center of inertia of the system. The equation of 

moments (2.1) can then be written, taking into account (2.5). as of (2.5) , as follows 

I.o‘+K**= m. (5.1) 

We assume that the rigid body with the fluid represents, in the absence of viscosity 
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effects (K* = 01, a conservative system which has a position of equilibrium, and that the 

potential energy of this system in the neighbourhood of its position of equilibrium is 

expressed, with an approximation to the infinitesimals of higher order, by a homogeneous, 

positive definite quadratic form of its deflections from the position of equilibrium. In this 

case, as we know, the equilibrium is stable. We shall limit our analysis to small (linear) 

oscillations in the proximity of the equilibrium position. 

We can introduce on these assumptions for a conservative system (K* = 0) a system 

of generalised normai coordinates pl, qt and 4%. Vector 0, in the case of linear oscillations, 

is related to the derivatives of the normal coordinates by 

o = A.q” (5.2) 

where A is a certain nondegenerate constant matrix, and q is a vector with the compon- 

ents q1 , q2 and q, . The quadratic form of kinetic energy l/z (I. 0). 0 is. represented in 

normal coordinates by l/&q’ -q’). [ 141. 

From this, by virtue of Equationi5.21, we obtain the matrix equation 

A’IA = E (5.31 

where the prime denotes a transposed matrix, E is a 3 x 3 unit matrix. 

For a conservative system (K* = 0) the linearised equations of motion are expressed 

in normal coordinates by 

Here D is a diagonal matrix with h? as its diagonal elements where Aj > 0 represent 

the natural frequencies of oscillation o the conservative system (j = 1, 2, 3). Moment ! 

of external forces with K* = 0 is obtained from Equations (5. l), (5.2) and (5.4) 

m, = I.@’ = IA.q*’ z.z -IAD.q (5.51 

We assume in accordance with (5.5) that the moment me depends onIy on coordinates 

Q also when K* f 0. The equation of motion (5.1) by virtue of (5.2) and (5.51, then becomes 

IA.q”+ K**+ IAT3.q = 0 

Using equation (5.3), we multiply this equation by A’to obtain 

q”+ A’.K*‘+ D.q -_ 0 (5.6) 

Equation (5.6) will be transformed into a system of integro-differential equations, if 

we substitute into it the expression for K * from (2.8) which, by virtue of Equations (5.21 

and b = 0, becomes 

As the components of tensor B are proportional to the small parameter \iY (see (2.1211, 

the second term of (5.6) represents a small perturbation. The solution of the system of 



llotion of a body with a fluid-filled cavity 587 

Equations (5.6). or (2.1) can be obtained either by the method of small parameters, or 

numerically. We shalt consider here one important class of particular solutions. 

The most interesting cases are those of perturbations in the natural osciI1ation.s of a 

system induced by viscosity effects, If an unperturbed system (K* = 0) is in its j-th mode 

of characteristic oscillations, all coordinates, with the exception of q., are equal to zero. 

We shall consider the motion of a perturbed system oscillating close ;‘o the j-th character 

istic oscillation of such a system without perturbation. We can, therefore, assume that all 

coordinates, with the exception of q. are small. In the first approximation with respect to 

parameter fi it will be sufficient to’ retain the terms dependent of qj only in the perturbing 

term of the j-th equation of the system (5.6). We shall seek the expression for qi (r) in the 

form 
qj (tf = Cj@j 

where Cj and p. are constants, Then, taking for K* the expression from (4.4), and with 

regard to formu a (5.21, we obtain the j-th equation of (5.6) in the form i 

Cjp,2epj’ - iq CjPj2 (A’BA)jjepjf + hj’C$‘j’ = 0 

We assume here that Re I/pj < 0, while the index jj indicates the j-th diagonal 

element of the matrix A ‘BA. From this we derive the characteristic equation for the de- 

termination of exponent p. 
I 

(5.7) 

Next we shall find the roots of Equation (5.71, approximating the roots f ih j of the 

characteristic equation of the unperturbed system. Let us substitute into (5.7) 

Pj =; + ihj + 6j 

where ai is an infinitesimal of the order of magnitude of the components of the tensor B. 
From (5.7) we obtain the first approximation of aj 

Selecting in (5.8) the branch of the root for which Re v $I ihj < 0, we finally 

obtain 

(5.9) 

Matrix of the tensor B is symmetric, as was shown in per. 2, and defines a positive 

definite quadratic form. But the matrix A’BA has the same properties. Therefore, all 

diagonal elements of matrix A ‘BA are positive. Hence, it follows from the formula (5.9) 

that the presence of viscosity has the effect of introducing into characteristic oscillations 

a damping decrement (Re pi < 01, and of decreasing the characteristic frequency by the 

amount equal to that decrement. 

We shall consider e simple example. Let the oscillations of the body be restricted to 
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plane oscillations about a fixed axis which we select as the Ox, axis. The kinetic energy 

of this system, in the absence of viscosity, is l/r 1,,02 , where I,, is the moment of 

inertia of the body, with its cavity filled with a perfect fluid, about the axis Oz, . The 

transition to normal coordinates is effected by means of the scalar function o = q’/ ~fz, 

similar to (5.2). Instead of formula (5.9), we then have 

p = + ih - r 1/a (1 f i)B.$.] / (2 j/21,,) 

where A is the characteristic frequency of oscillation of the body in the absence of vis- 

cosity, and B,, is the component of tensor B corresponding to axis Ox,. 

If the oscillations are due to the force of gravity (the body in this case is a pendulum 

with a cavity completely filled with a fluid at large Reynolds numbers, then 

(5.11) 

where m is the total mass of the body and the fluid, g is the acceleration due to gravity, 

and 1 the distance of the center of inertia from the axis of suspension Ox,. 

Plane oscillations of a pendulum with its cavity filled with fluid were analysed in 

[4], where the cavity was assumed to be a body of revolution about an axis parallel to the 

axis of suspension. For the purpose of computation of the moment of inertia I,, , it can be 

assumed in this case that the mass of fluid is concentrated on the axis of the cavity, 

where Ia is the moment of inertia of the rigid body relative to the axis Ox,, m’ is the mass 

of the fluid, and 1 ‘the distance of the axis of the cavity from the axis Ox,. A substitu- 

tion into Formula (5.10) of the expressions for x from (5.11). for I33 from (5.12), and for 

Br, from (3.8). yields the result obtained in [4]. 
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